Jagodzinski, H. (1984). Bull. Minéral. 107, 455-466.
McConnell, J. D. C. \& Heine, V. (1984). Acta Cryst. A40, 473-482.
Steurer, W. \& Adlhart, W. (1983a). Acta Cryst. B39, 349-355.
Steurer, W. \& Adlhart, W. (1983b). Acta Cryst. B39, 721-724.
Steurer, W. \& Jagodzinski, H. (1986). In preparation.
Takéuchi, Y. (1972). Z. Kristallogr. 135, 120-136.
toman, K. \& Frueh, A. J. (1973a). Acta Cryst. A29, 121-127.

Toman, K. \& Frueh, A. J. (1973b). Acta Cryst. A29, 127-133. Tomeoka, K. \& Ohmasa, M. (1982). Am. Mineral. 67, 360-372. Wolff, P. M. de (1974). Acta Cryst. A30, 777-785.
Wolff, P. M. de, Janssen, T. \& Janner, A. (1981). Acta Cryst. A37, 625-636.
Үamamoto, A. (1982). Acta Cryst. A38, 87-92.
Yamamoto, a., Nakazawa, h., Kitamura, M. \& Morimoto, N. (1984). Acta Cryst. B40, 228-237.

Atomic Scattering Factors for Mixed Atom Sites

By Keith D. Sales
Department of Chemistry, Queen Mary College, Mile End Road, London E1 4NS, England

(Received 23 April 1986; accepted 21 May 1986)

Abstract

A method is presented for the calculation of analytical coefficients for scattering factors at mixed atom sites. The importance of the concept of compatible coefficients for the separate atoms is stressed and examples of the problems that can arise when trying to find coefficients for mixed atom sites are given. A computer program and its use are described. Two errors in International Tables for X-ray Crystallography [(1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht)] are noted, for Ru^{4+} and Bi^{5+}, for which revised coefficients are given. For $\mathrm{N}, \mathrm{O}^{-}$and Sr^{2+} analytical coefficients are given which fit the tabulated scattering factors significantly better than the coefficients in International Tables for X-ray Crystallography.

1. Introduction

The atomic scattering factor is used to describe the coherent scattering of X-rays by an atom. It is a function of the electron density of the atom and the finite size of this density causes the scattering factor to depend upon the Bragg angle θ and the wavelength of the X-rays λ through the parameter $x=\sin \theta / \lambda$. The electron density of an atom is known only by theoretical calculation so the scattering factor is approximate and depends upon the reliability of the theory; various calculations have been used and the resulting factors tabulated for a range of x values between 0 and 2 (International Tables for X-ray Crystallography, 1974, pp. 82-98).
Tables of such values were used in older X-ray computer programs, scattering factors for non-tabulated x values being obtained by linear interpolation. More recent programs use an analytical expression
of the form:

$$
\begin{equation*}
f_{c}(x)=\sum_{i=1}^{4} a_{i} \exp \left[-b_{i} x^{2}\right]+c, \tag{1}
\end{equation*}
$$

with values of $\mathbf{a}\left(=a_{i}, i=1\right.$ to 4$), \mathbf{b}\left(=b_{i}, i=1\right.$ to 4$)$ and c being tabulated for different atoms (International Tables for X-ray Crystallography, 1974, pp. 99-101). The a, b and c for a particular atom are obtained by minimizing the difference between $f_{c}(x)$, the value calculated from such an expression, and $f(x)$, the tabulated value. The statistic used here to obtain this best fit is

$$
x^{2}=\sum_{i=1}^{n}\left[f\left(x_{i}\right)-f_{c}\left(x_{i}\right)\right]^{2} /(n-9),
$$

where n is the number of x values used in the fitting, those used here being $x_{i}=0.0(0.01) 0.20(0.02) 0.50$, $0.55,0.60,0.65,0.70(0.10) 2 \cdot 00$, a maximum of 53 values, although for some cases $f(x)$ is quoted for only the first 48 values.

Some structures contain a mixture of two different atoms occupying the same type of site as, for instance, NO and CO groups or Na^{+}and K^{+}ions disordered in a lattice. In these cases an average scattering factor has to be used:

$$
\begin{equation*}
f(x)=x_{A} f_{A}(x)+x_{B} f_{B}(x) \tag{2}
\end{equation*}
$$

where x_{A} is the mole fraction of atom A with scattering factor f_{A} and similarly for B. With tabulated values of f_{A} and f_{B} this averaging is trivial, but with the analytical expression for f there is a complication in existing computer programs which require coefficients for each 'atom', regardless of whether that 'atom' is a mixture of two atoms or not. Thus the problem is to express $x_{A} f_{A}(x)+x_{B} f_{B}(x)$ in the form of (1).

Table 1. Coefficients for mixtures of C and N starting from pure C

The coefficients of the mixture of next higher x_{A} have been used to begin each calculation.

$\boldsymbol{x}_{\text {A }}$	a_{1}	a_{2}	a_{3}	a_{4}	b_{1}	b_{2}	b_{3}	b_{4}	c
1.00	1.59217	1.39793	2. 15991	0.636729	0.567485	11.1793	23.8251	$57 \cdot 3470$	$0 \cdot 212972$
0.90	1.58486	$1 \cdot 25760$	2.32489	0.713653	0.552649	10.0157	21.9017	54.3586	0.218597
0.80	1.57838	$1 \cdot 24101$	2.41398	0.742646	0.537745	9.31626	$20 \cdot 8839$	52.6317	$0 \cdot 223543$
0.70	1.57287	$1 \cdot 28006$	2.46706	0.751716	0.522874	8.87302	20.2215	51.3354	$0 \cdot 227822$
$0 \cdot 60$	1.56855	1.36431	2.49405	0.741035	$0 \cdot 508305$	$8 \cdot 61937$	19.8448	50.4459	0.231606
0.50	1.56534	1.46392	2.51075	0.724903	0.493814	8.44845	19.5571	49.6218	0.234663
$0 \cdot 40$	1.56331	1.57576	2.51954	0.704053	0.479421	$8 \cdot 33513$	19.3410	48.8463	$0 \cdot 236953$
$0 \cdot 30$	1.56251	1.69663	2.52223	0.679889	0.465114	$8 \cdot 26038$	19.1765	48.0834	$0 \cdot 238397$
$0 \cdot 20$	1.56288	1.76787	2.54401	0.686929	0.450032	$8 \cdot 11120$	18.6948	46.5252	0.237962
$0 \cdot 10$	1.56489	1.95700	2.51317	0.626343	0.436686	$8 \cdot 18109$	18.9462	46.4561	0.238374
0.00	1.56822	2.09369	$2 \cdot 50215$	0.599096	0.422538	$8 \cdot 16299$	18.8601	45.5169	$0 \cdot 236688$
	[12.2126	$1 \cdot 16630$	3.13220	2.01250	0.005700	0.58260	9.89330	28.9975	-11.5290]*

2. Method and problems

Marquardt's (1963) method, which is simple and efficient provided, as is the case here, the derivatives of χ^{2} with respect to the coefficients can be evaluated analytically, has been used to find the best fit. A Fortran program to find the best coefficients for a mixture of atoms is given in the deposited material, together with an explanation of its use.* The method is iterative, requiring starting values of $\mathbf{a}_{0}, \mathbf{b}_{0}$ and c_{0} and, as with any iterative method, the rate of convergence depends upon these starting values. Problems occur in the minimization because the surface of χ^{2} plotted against \mathbf{a}, \mathbf{b} and c is, in some cases, rather complicated: it appears to be flat in parts, to be pitted with local minima which are higher than the global minimum, and to contain more than one global minimum. Thus, depending upon the choice of $\mathbf{a}_{0}, \mathbf{b}_{0}$ and c_{0}, it is possible either to fall into a local minimum, when the method will make no further progress, or to reach a flat region near the global minimum, when progress becomes very slow. There is no easy way round the latter problem and whereas the former can, in principle, be circumvented by restarting from a different point, in practice this is difficult to programme for the general case and would result in a time consuming procedure. The fact that there can be more than one global minimum means that several sets of quite different coefficients may give an equally good fit to the data.

The choice of $\mathbf{a}_{0}, b_{0}, c_{0}$ is therefore a matter of importance. The most obvious reasonable one would seem to be:

$$
\begin{equation*}
\mathbf{a}_{0}=x_{A} \mathbf{a}_{A}+x_{B} \mathbf{a}_{B} \tag{3}
\end{equation*}
$$

with similar expressions for \mathbf{b}_{0} and c_{0}. The first problem is that whereas a_{i} and b_{i} for a particular atom

[^0]are paired the order of the pairs is arbitrary, so it is not clear for a mixture how to order the relative pairs for averaging in (3). A second problem, which is in some ways related to the first, is that the coefficients of atom A may not be compatible with those of B in the sense that if the coefficients for a series of mixtures of A and B are calculated starting from pure A and always using as starting values the final values for the previous mixture, the coefficients for pure B may be completely different from the tabulated values. An example, for carbon and nitrogen, is shown in Table 1 ; the coefficients found here for pure nitrogen actually give a better fit to the f data.

3. Applications

The coefficients for the free atoms and chemically significant ions have been recalculated in an attempt to make them more compatible in the sense defined above. There can be no absolute guarantee that a set of coefficients is completely compatible for that would require calculations on a series of mixtures for all possible pairs of atoms - a very large amount of computation. Furthermore, it is quite probable that no one set of coefficients would be compatible for all possible pairs. In the course of this work two errors were found in the tabulated values: the coefficients for Ru^{4+} and Bi^{5+} are incorrect (usable values are given in Table 2). The species with the bigger changes in their coefficients, relative to the tabulated values, are shown in Table 2 together with the errors for the two sets; the compatible coefficients for $\mathrm{N}, \mathrm{O}^{-}$and Sr^{2+} happen also to give rather smaller errors. Some typical results for equimolar mixtures of atoms, which might be expected to be the most difficult ones to fit, are given in Table 3 and illustrate the points made above. Thus for the pairs (C,N) and ($\mathrm{Na}^{+}, \mathrm{K}^{+}$) the old coefficients require many more iterations than the new but arrive at the same minimum, whereas for $\left(\mathrm{O}^{-}, \mathrm{Cl}^{-}\right)$a worse result is obtained after more iterations. Similarly poor results are obtained for $\left(\mathrm{Y}^{3+}, \mathrm{Sm}^{3+}\right)$ and $\left(\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}\right)$. It is interesting to note

Table 2. Compatible coefficients with the bigger differences from tabulated values

The row for each species contains the coefficients in the order $\mathbf{a}, \mathbf{b}, \boldsymbol{c}$, the maximum error, x value at which it occurs, and the mean error, with corresponding values for the tabulated coefficients in brackets.

N	1.56822	2.09515	$2 \cdot 50171$	0.598040	$0 \cdot 422558$	8. 16516	18.8703	$45 \cdot 5445$	0.236715	0.0010	2.00	0.0003	0066	$0 \cdot 11$	29]
O^{-}	$1 \cdot 39094$	$3 \cdot 27082$	$3 \cdot 08788$	0.766192	0.442884	7.01110	20.0770	66.4949	0.482356	0.0026	$1 \cdot 30$	0.0013	14	0	44]
Ar	$6 \cdot 19120$	$7 \cdot 26462$	$7 \cdot 12086$	1.90010	0.0106084	0.949902	15.3801	-	-4.47684	$4 \quad 0.0108$	$8 \quad 0.80$	$0 \quad 0.0021$	[0.0292	22.00	29]
K^{+}	3.83963	$3 \cdot 59059$	7.73888	1.41577	0.771452	0.772122	12.4399	29.5307	1.41618	.	,	0026	0,	,	0.0033]
Ti^{4+}	7.93953	7.95478	-1.6139	$2 \cdot 26933$	30.565339	6.19280	1.93746	11.8272	1.45011	0.0006	0.14	0.0003	. 0018	. 50	.0004]
$\mathrm{Sr}^{\mathbf{2 +}}$	8.30615	17.8518	8.65338	1.97393	0.078529	1.51796	13.1749	26.4711	-0.7849	0.00	0	0.0005	0.0	2.	.001]
Y^{3+}	14.8649	17.7993	9.18957	1.70509	0.0349503	1.36526	11-2808	22.8260	-7.55888	0.0021	$1 \cdot 10$	0.0005	[0.0049	2.00	0.0006]
Zr^{4+}	25-4279	17.8868	10.0699	0.946880	0.0168489	91.23581	10.2292	$2 \quad 21.7825$	-18.3310	$0 \quad 0.0047$	$7 \quad 0.90$	0 0.00	[0.	6 $2 \cdot 00$	0.0010]
Ru^{4+}	14.9890	18.5004	13.0735	$2 \cdot 29059$	0.0109554	0.845303	8.09074	4 20.3722	-8.85346	$6 \quad 0.0082$	$2 \quad 1.00$	$0 \quad 0.00$	[-		
Rh^{3+}	13.5476	18.7909	14.1496	$3 \cdot 28190$	0.00663111	10.769059	597.8706	21-3	-7.7712	$26 \quad 0.007$	$76 \quad 2.00$	$00 \quad 0.0$	[0.013	$34 \quad 2 \cdot 0$	0 0.0022]
Rh^{4+}	7.13262	18.7752	13.8916	$2 \cdot 61762$	0.0111264	0.763980	7.60410	- 19.0217	-1.41710	$10 \quad 0.0083$	$3 \quad 1.80$	0 0.0019	[0.0134	$4 \quad 2.00$	0 0.0021]
$\mathrm{Bi}^{\text {S+ }}$	12.0277	32.5234	19.7004	6.24141	$0 \cdot 125629$	0.945056	5.86539	$13 \cdot 2823$	7.505620	$0.0038 \quad 0$	$0.90 \quad 0$	0.0014	-]		

Table 3. Errors for equimolar mixtures of A and B atoms

		Tabulated coefficients				Compatible coefficients			
A	B	max.	x	mean	its*	max.	x	mean	its
C	N	0.0028	2.00	0.0006	390	0.0028	2.00	0.0006	12
Na^{+}	K^{+}	0.0027	0.80	0.0010	156	0.0027	0.80	0.0010	9
O^{-}	Cl^{-}	0.0109	0.65	0.0058	261	$0 \cdot 0063$	1.50	0.0021	148
Ti^{4+}	Mn^{4+}	0.0013	$1 \cdot 40$	0.0004	86	0.0014	1.40	0.0003	$23 \dagger$
Ca^{2+}	Sr^{2+}	0.0077	2.00	0.0020	236	0.0011	0.70	0.0005	204
Y^{3+}	Sm^{3+}	0.0290	2.00	0.0088	500 \ddagger	0.0013	0.24	0.0005	53
Mn^{4+}	Zr^{4+}	0.0077	1.30	0.0027	157	0.0026	1.40	0.0007	80
Cr^{3+}	Rh^{3+}	0.0028	0.80	0.0010	$500 \ddagger$	0.0053	0.90	0.0022	182
* its = number of iterations taken. \dagger Takes 275 iterations if the Ti^{4+} coefficients are re-ordered. $\ddagger 500$ was the maximum number of iterations allowed.									

Table 4. Errors for equimolar mixtures of A and B atoms using calculated atomic scattering factors

The errors are relative to the tabulated factors, not the calculated ones.

\boldsymbol{A}	\boldsymbol{B}	max.	\boldsymbol{x}	mean	its*
C	N	0.0031	2.00	0.0006	9
Na^{+}	K^{+}	0.0067	0.90	0.0014	36
O^{-}	Cl^{-}	0.0098	0.80	0.0040	95
Ti^{4+}	Mn^{4+}	0.0025	1.20	0.0004	7
Ca^{2+}	Sr^{2+}	0.0052	0.90	0.0012	177
Y^{3+}	Sm^{3+}	0.0013	0.24	0.0005	56
Mn^{4+}	Zr^{4+}	0.0024	1.40	0.0007	472
Cr^{4+}	Rh^{4+}	0.0059	1.40	0.0016	364
	*its = number of iterations taken.				

that if the compatible b coefficients for Ti^{4+} (see Table 2) are re-ordered to be in increasing size then 275 iterations are required to produce the same result, another indication of the importance of obtaining compatible coefficients.

The technique for finding the coefficients as explained so far requires not only the coefficients of the two constituent atoms and their mole fractions but also the scattering factors for the atoms. The scattering factors for the mixture are found from (2) and the starting values $\mathbf{a}_{0}, \mathbf{b}_{0}$ and c_{0} for the iterative procedure from (3). However, it is more convenient, especially when x_{A} is an unknown quantity and has
itself to be optimized during the general crystallographic fitting, to calculate the scattering factors from the stored coefficients for the atoms and to use these values for f_{A} and f_{B} in (2). This procedure will, in general, be less accurate but appears to give satisfactory results, as the typical data in Table 4 show.

4. Concluding remarks

The recommended procedure to obtain coefficients for a mixture is to use the tabulated atomic coefficients as input to the computer program: if the computed error limits are acceptable then use the derived coefficients. If the mole fraction is not known, when the number of iterations may be important, or if the errors are not acceptable then compatible coefficients for the pair of atoms should be found as described in the text (see Table 1). Thereafter the coefficients for all mixtures should be obtainable quickly and accurately.

References

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Marquardt, D. W. (1963). J. Soc. Indust. Appl. Math. 11, 431441.

[^0]: *The Fortran program MARQ and its accompanying documentation have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 42963 (15 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

